Analyzing Game Play and Processes
Unit 1 - Surveying the Landscape

Unit 1 Lesson 4 Activity: Analyzing Game Play and Processes
[bookmark: _GoBack]	
Name(s): ___
Part 1 - Analyzing goals, rules, and structure of the game
With a partner, take turns playing the Chase and Gather Pro game: http://aka.ms/ChasePro
Closely observe how you and your partner interact with the game.
Record your observations by answering the following questions.
What is the goal of the game?

How does the scoring work?

How does the timer enter into the game play?

When does the game end?

How long did it take to figure out the rules of the game?  

Describe the pacing or speed of play.

    

Is the game challenging? Too challenging? 

What strategies did you develop to increase your score?

Which “fun” elements from the list reviewed at the beginning of the lesson were present in this game?

STOP
Wait for your teacher to give instructions for the next part of this activity.
Part 2: Making connections to code.
With a partner, answer the questions below about the Chase and Gather Pro game.
For each question, find code (below) that you think is responsible for the behavior. Circle the code and label it with the corresponding question number.
Play the game again as necessary.

1. What player action causes a game action?  

In what ways does the “hero” respond to the player’s actions?

Describe how the user knows the score.   

What causes the score to increase? What causes the score to decrease? 

Is there anything in the game that appears to be random?

List 3 ways in which you think math is involved in this game in addition to the scoring?

List four situations in which the program must make a decision?  

Code for Chase and Gather Pro:
[image:]

[image:]
[image:]

[image:]U1.04_Activity page 1

[image:]U1.04_Activity page 2
image2.emf
game board - on every frame do
if hero - overlaps with(target1) then

¥ game - add score(10)
€ yum yum - play
> launch(targetl, target width, [target speed)

else do nothing end if
if hero - overlaps with(target2) then

¥ game - add score(10)
€ yum yum - play
> launch(target2, target width, [target speed)

else do nothing end if
if hero - overlaps with(target3) then

¥ game - add score(5)
€ yum yum - play
D> launch(target3, target width, [target speed)

else do nothing end if
if hero - overlaps with(target4) then

¥ game - add score(5)
€ yum yum - play
D> launch(target4, target width, [H target speed)

else do nothing end if
if hero - overlaps with(obstaclel) then

& burp - play
& game > remove life(1)
> launch(obstaclel, target width, [target speed)

else do nothing end if
if hero = overlaps with(obstacle2) then

€ burp - play

¥ game > remove life(1)

> launch(obstacle2, target width, [target speed)
else do nothing end if
var lev := math - floor(¢ game - score / 75)
if not (lev = [current level) then

[Hcurrent level :=lev

[H hero speed := [Hhero speed * 1.5

[Htarget speed := [Htarget speed * 2

else do nothing end if
end

€ Circus Theme - play

image3.emf
time - run every(7.2214) do

€ Circus Theme - play
end
end function

private atomic function launch (
sprite : Sprite,
target width : Number,

target speed : Number)
do

sprite - set width(target width)
sprite - set pos(math - random range(0, 800), math - random range(0, 400))
var x := math - random range(0, 800)
var y := math - random range(0, 400)
var xspeed := target speed * (x - sprite > x) / math = abs(x - sprite = x)
var yspeed := target speed * (y - sprite = y) / math = abs(y - sprite = y)
sprite = set speed(xspeed, yspeed)
end function

private atomic function set angle (
ydiff : Number,
xdiff : Number,
sprite : Sprite)
do
var angle := math = atan((ydiff) / (xdiff)) * 180 / math > nt
if xdiff < 0 then

sprite - set angle(180 + angle)
else

sprite - set angle(angle)
end if
end function

data current level : Number
data hero speed : Number
data target speed : Number

art Circus Theme : Sound
with data: "https://az31353.vo.msecnd.net/pub/dztbuwii"

art burp : Sound
with data: "https://az31353.vo.msecnd.net/pub/nkpnixxs"

art cake : Picture
with data: "https://az31353.vo.msecnd.net/pub/kxjyimee"

image1.emf
function main ()
var game board := € game —> start with fixed size(800, 400)
¥ game - splash("Tap the screen to change Bot's direction.\nGather the tasty stuff, avoid the rest!")
with seconds = 2

with foreground color = colors = white

with background color = colors = blue
end

{» game - start countdown timer(60)
game board = set background picture($€® clouds background)
¥ game - bounce on sides

var hero := ¢y game - create sprite($ robot)
hero - set width(50)

[H hero speed := 100
game board - on tap(tapped)
where tapped(x : Number, y : Number) is

var xdiff := x - hero - x
var ydiff :=y-hero—> vy
var hyp := math - sqgrt(math - pow(xdiff, 2) + math - pow(ydiff, 2))
var xspeed := [H hero speed * (xdiff) / hyp
var yspeed := [H hero speed * (ydiff) / hyp
> set angle(ydiff, xdiff, hero)

hero - set speed(xspeed, yspeed)
end
end

var target width := 60

[Htarget speed := 25

var targetl := game board - create picture(® candy bar)
> launch(targetl, target width, [target speed)

var target2 := game board - create picture(€ donut)

> launch(target2, target width, [target speed)

var target3 := game board - create picture(€® french fries)
> launch(target3, target width, [target speed)

var target4 := game board - create picture(® cake)

> launch(target4, target width, [H target speed)

var obstaclel := game board - create picture(€ tomato)
> launch(obstaclel, target width, [Htarget speed)

var obstacle2 := game board - create picture($€ carrot)
> launch(obstacle2, target width, [Htarget speed)

[Hcurrent level :=0

image4.png

